Главная > Математика > Ошибки в математических рассуждениях
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

64. Трисекция угла.

Выполнить трисекцию угла — это значит разделить угол на три равные части. Сделать это, конечно, совсем нетрудно. Можно, например, измерить данный угол транспортиром, разделить найденное число градусов на три, а затем отложить посредством того же транспортира угол, содержащий полученное в частном число градусов. Но можно обойтись

и без транспортира, применяя метод «последовательных приближений»: построив произвольным радиусом дугу, для которой данный угол является центральным, возьмем на глаз хорду, соответствующую третьей части дуги, и отложим эту хорду последовательно три раза по дуге, начиная от одного из ее концов. Если после этого мы окажемся на другом конце дуги, задача решена. Если же, как это обыкновенно и бывает, мы не дойдем до другого конца дуги, или перейдем через него, то взятую нами на глаз хорду надо исправить, увеличив или уменьшив ее на одну треть расстояния от полученной точки до конца дуги, причем эту одну треть берем опять-таки на глаз. Эту исправленную хорду снова откладываем на дуге и в случае надобности вновь исправляем тем же способом. Каждая новая (исправленная) хорда будет давать все более точное решение, и, наконец, повторив операцию несколько раз, мы получим хорду, которая уложится на данной дуге практически ровно три раза, и трисекция угла будет выполнена. Конечно, эти два способа позволяют делить данный угол не только на три, но на любое число равных частей.

Однако, когда математики говорят о проблеме трисекции угла, они имеют в виду не эти весьма ценные в практическом отношении, но все же лишь приближенные способы, а точный способ, притом основанный на применении исключительно циркуля и линейки. Необходимо еще отметить, что имеется в виду использование одного лишь ребра линейки и что линейка должна служить только для проведения прямых (не допускается использование, например, масштабных делений), а циркуль — только для вычерчивания окружностей. Наконец, искомый способ должен давать решение задачи посредством конечного числа операций проведения прямых и окружностей. Последнее замечание очень существенно. Так, установив (по формуле суммы геометрической бесконечно убывающей прогрессии), что

можно предложить следующее решение задачи трисекции угла, требующее применения только линейки и циркуля: делим данный угол на 4 равные части, что, как известно, выполнимо посредством циркуля и линейки, а затем к полученному углу прибавляем поправку, равную четверти его самого, т. е. данного угла, потом вторую поправку,

равную первой, т. е. данного угла, и т. д. Точное решение задачи этим способом требует бесконечно большого числа операций (делений углов на 4 равные части), а потому не является тем классическим решением, какое имеют в виду, когда говорят о решении задачи трисекции угла и других задач на построение.

Итак, у нас будет идти речь о точном решении задачи трисекции угла посредством проведения конечного числа прямых и окружностей.

Для некоторых углов эта задача решается весьма просто. Так, для трисекции угла в 180° достаточно построить угол в 60°, т. е. угол равностороннего треугольника, а для трисекции углов в 90° и 45° — углы в 30° и 15°, т. е. половину и четверть угла равностороннего треугольника. Однако доказано, что наряду с бесконечным множеством углов, допускающих трисекцию, существует бесконечное же множество углов, не допускающих трисекции (в указанном выше смысле). Так, нельзя разделить на три равные части (посредством проведения конечного числа прямых и окружностей) ни угол в 60°, ни угол в 30°, ни угол в 15°, ни угол в 40°, ни угол в 120°, ни бесконечное множество других углов.

Черт. 39

Теперь выясним, правилен ли следующий часто рекомендуемый способ деления произвольного угла на три равные части. Из вершины В произвольным радиусом проводим дугу окружности, которая пересечет стороны угла в точках (черт. 39). Делим хорду на три равные части и соединяем точки деления с В. Углы окажутся, будто бы, равными, и трисекция произвольного угла следовательно, будет выполнена так, как

требуется, т. е. посредством проведения конечного числа прямых и окружностей: деление отрезка на три равные части, которое здесь требовалось, выполнимо, как известно, именно так.

Предлагающие такое решение полагают, что равенство отрезков на которые мы разделили хорду влечет за собой и равенство дуг которые получатся, если продолжить и до пересечения с окружностью. Так ли это? Если эти дуги равны, то равны и углы (пусть каждый из них равен а), равны и стягивающие их хорды Но отрезок больше отрезка (это утверждение подсказывается чертежом, но ниже мы его докажем), а отрезок равен отрезку так как углы и равны:

Следовательно, при равенстве отрезков и отрезки и вопреки условию неравны, и предположение о равенстве и надо отвергнуть.

Опустив перпендикуляр из вершины В на хорду замечаем, что вся фигура симметрична относительно ВК: перегнув чертеж по мы приведем обе его половинки к совпадению. Отсюда заключаем, что отрезок III перпендикулярен к а в силу этого отрезок параллелен и треугольники и подобны, что дает: Но а потому и как мы и утверждали выше.

Итак, деление хорды на три равные части не дает деления на равные части соответствующей дуги и не дает, следовательно, три секции соответствующего центрального угла: средний угол окажется непременно несколько больше каждого крайнего. Правда, при небольшом угле разница будет невелика, и на практике этим способом иногда пользуются для приближенного деления малого угла на три равные части.

Приведем еще одно доказательство неправильности предположения, что из равенства отрезков вытекает равенство дуг и углов Допустив, что все это так, и положив мы легко получим формулы: но откуда

Но, применяя формулу тангенса суммы двух углов легко найдем, что

Сопоставляя это безусловно правильное соотношение с полученной выше формулой мы придем к равенству верному лишь при Отсюда вытекает, что при равенстве отрезков соответствующие центральные углы не могут быть равными.

<< Предыдущий параграф Следующий параграф >>
Оглавление